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Position space calculation of a two-loop lattice diagram 

Richard Friedbergt and Olivier Martin$ 
t Physics Department, Barnard College and Columbia University, New York, NY 10027, 
USA 
$ Physics Department, City College of City University, New York, NY 10031, USA 

Received 27 April 1989 

Abstract. We evaluate the finite portion, in the massless limit, of a two-loop graph built 
on a pair of Polyakov lines in scalar (p3 theory on an infinite hypercubical lattice in 3 + 1 
dimensions. The actual calculation involves only three dimensions. We calculate in position 
space, using propagators obtained by a method previously described. By means of the 
Laplace difference equation we are able to obtain the answer as a function of r, (the 
separation of the Polyakov lines) for all r, in a large cube, in a single procedure. The CPU 
time (VAX/780) is about 6 ms per inequivalent value of io. Most of the time is taken by 
two two-dimensional discrete fast fourier transforms. However, the values calculated 
pertain to the infinite lattice. In our main calculation (4; minutes, 45 760 inequivalent 
values) we obtain 8-decimal accuracy over most of the domain. This far surpasses the 
momentum space method in both speed and accuracy. 

1. Introduction 

In field theory, statistical mechanics, and non-relativistic quantum mechanics, the path 
integral provides a convenient starting point for calculations. Usually, it is possible 
to construct a perturbative series about a translation-independent soluble limit, via 
diagrams. These are simply expressed in Fourier (momentum) space, but of course it 
is possible to express them in position space also. After some manipulation, the 
diagrams are boiled down to integrals which often have to be treated numerically. 

In continuum theories, the original multidimensional integrals can often be perfor- 
med analytically by ‘Feynman’s trick’, leaving numerical integrations only over a small 
number of auxiliary parameters. But in lattice physics, one is faced with a numerical 
integration over several &dimensional momentum vectors. Unfortunately, the accuracy 
of numerical methods deteriorates rapidly with the dimension of the integral. For 
some diagrams this dimension is reduced by doing the computation in position space. 
Moreover, in lattice physics the integrals in position space are replaced by sums, which 
are performed much faster and produce no interpolation error. 

Position space sometimes has additional advantages. The space may have boun- 
daries or random inhomogeneities which destroy translation invariance. Or the external 
variables may be more naturally expressible in position space, as in the calculation of 
Wilson loops with complicated shapes. 

This paper is part of a programme begun earlier [ 11 which explores the advantages 
of calculating in position space, especially in lattice-based theories. We consider here 
a simple example in lattice-based (3 + 1)-dimensional scalar (p3 theory. We calculate 
a two-loop diagram (figure 1) relating two Polyakov lines extending from -a to a in 
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Figure 1. ‘Spider’ graph between two Polyakov lines parallel to the time direction. 
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Figure 2. Three-dimensional graph equivalent to figure 1. The propagators in four 
dimensions have been summed over time to yield G, of (3.2). 

the ‘time’ direction, with arbitrary relative placement in three-dimensional ‘space’. 
Since one is to sum over all locations on the lines, the propagators have zero momentum 
in the t direction and therefore reduce to the standard three-dimensional propagators 
in (x, y, z) space. Consequently, our task amounts to calculating the graph of figure 
2 on a three-dimensional lattice. We take the lattice to be cubic and study the massless 
limit. We will show that if this problem is done in position space one can obtain 
results of far greater accuracy, in far less CPU time, than from a calculation in momentum 
space. 

2. Statement of the problem 

For non-zero mass M, the quantity to be evaluated would be 
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where r, (a vector with integer components) is the separation of the two fixed points, 
the integrals are from --72 to T, and 

3 

Q(k)=  (2-  COS kl). 
I = I  

The corresponding continuum quantity would be 

where the integrals are now over all k-space. As M + 0 ,  one can show that 

1 
= [In(-) - y + l  1 + O [ M ]  ( 2 . 4 )  

where y is Euler's constant. In view of the form of the infrared divergence, the term 
in In M must be the same on the lattice. Therefore 

as M + 0. We wish to calculate -f (In lattice gauge theory, the infrared divergence 
cancels when one sums over all diagrams. Therefore it would suffice to calculate for 
each diagram the quantity analogous to .f) 

3. Propagator in position space 

The expression (2 .1 )  can also be written as 

GM ( * I 2 G ~  ( ro-  * )  FM (ro) = 
r 

where r is summed over the lattice, and 

(3 .1 )  

(3 .2 )  

Since GM satisfies 

D2GM ( r )  = -8, + M2GM ( r )  (3 .3 )  

where D2 is the Laplace difference operator, we have 

D 2 F M ( r ) =  - G M ( r ) ' + M 2 F M ( r )  

or, taking the limit M + 0, 

D 2 f ( r )  = - g ( r ) 2  

where 
d3k e i k ' r  

g ( r ) = 4 7 r  lim G M ( r ) = 4 7 r  -- 
M -0 f 

(3 .4 )  

(3 .5 )  

(3 .6 )  

In a previous paper [l], we have shown how to calculate the whole array of values of 
g nearly to machine accuracy ( -15 decimals in double precision) with a program 
requiring less than 100 ps CPU time on a VAX/780 for each value of r. Thus we may 
regard g as given, over any desired range of r. 



1578 R Friedberg and 0 Martin 

4. Boundary value problem 

We are to solve ( 3 . 5 )  with the condition that for r + CO, f should grow more slowly 
than r. This actually means that f =  In ( 1 / 3 r )  - y + 1 ,  in agreement with the continuum 
solution (2.4). We considered several alternative methods. 

The most direct way is to sum ( 3 . 1 )  for M = 0, making a term by term subtraction 
to cancel the infrared divergence. Apart from the complexity of separately evaluating 
the sum of the subtractions, the subtracted series still converges very slowly (error - 1 /  R )  and one needs considerable time for high accuracy. 

An attractive idea is to solve (3 .5)  in momentum space by means of the fast Fourier 
transform (FFT) [2]. However, this method always introduces some kind of boundary 
conditions-periodic, Dirichlet, or Neumann-on the surface of some cube surround- 
ing the origin. This would seriously distort our solution since it would amount to 
placing a sublattice of image sources all over space. The quantity we are trying to 
calculate pertains to the infinite lattice. However, a simple modification of FFT allows 
us to solve (3.5) in a cube with inhomogeneous boundary conditions. Thus, if we know 
the true f( r )  on the surface-this can be found by an asymptotic series in 1/ r which 
is much faster than a direct sum-we can find its values quickly and accurately inside 
the cube. This is the method we have used. It would also be possible, given the 
boundary values off;  to solve (3.5) by relaxation. But this is slower and less accurate 
than FFT. 

5. Asymptotic series 

For any well-behaved function, the Taylor expansion shows that 

( 5 . 1 )  

successive terms falling off as powers of l / r 2 .  This allows us to construct the following 
table, valid for large r: 

1 
r 

D 2 - = i P 4 ( P ) / r S + .  . . 

2 1  D -= 21r4+ . . .  
r2  

( 5 . 3 )  

(5.4) 

where 

= r -4(x4  + y4 + z4  - 3 x 2 y 2  - 3x2z2  - 3y2z2)  (5 .7 )  
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is the unique spherical harmonic of order 4 possessing cubic symmetry and normalised 
to P4(z*) = 1. From (3 .6)  and ( 3 . 3 ) ,  g ( r )  satisfies 

D’g( r )  = - 4 ~ 6 ,  ( 5 . 8 )  

and vanishes far away; hence, by Gauss’ law, g - l / r  +. . . . Then comparing ( 5 . 3 )  and 
(5 .6 ) ,  we see that (5.8) is satisfied more nearly by 

1 
r 

g ( r ) = - + i p 4 ( i ) / r 3 + .  . . (5.9) 

Squaring (5.9) and substituting into ( 3 . 5 ) ,  we find by combining (5.2), (5.4) and (5.5) 
that ( 3 . 5 )  would be satisfied to O ( l / r 4 )  i f f  were taken equal to 

1 (&+hP4(3) 
3r r2 

f o ( r )  = In -- y +  1 + (5.10) 

But since we are looking only at the part of space far from the origin, there is also a 
homogeneous solution g ( r ) .  Therefore, we can only say that 

f ( r ) = f o ( r ) + A g ( r ) + .  . . 
1 A 

3 r  4 
= In -- y + 1 + A / r  + T - ~ ( & + & P ~ (  i ) )  +- r-3P4( r*) + O[ r -4 ]  ( 5 . 1  1 )  

where A is to be determined. 

6. Determination of A 

To find A we return to (3 .1)  and to the continuum analogue obtained from (2 .3 )  
- M r  2 e-Mlro-rl 

F M ( ~ ~ ) = J  d3r(L) 4 r r  (4 rrlro-rl ). 
By comparing (2.4) with (2 .5 ) ,  we see that A / ( 4 7 ~ ) ~  is the coefficient of l / r o  in the 
leading term (for ro + CO) of 

A =  M lim -0  ( F M - F M ) .  (6 .2)  

This leading term can be found by replacing Ir,- rl by ro in both ( 3 . 1 )  and (6 .1) .  (Note 
in particular that for r >> ro the difference between the integrands of (3 .1)  and (6 .1)  
diminishes as ( l / r 3 ) (  l / r ) (  l / r ) ,  so that the contribution from large r is of order d3r/r5,  
or l / r * . )  Making this replacement, and taking GM(rO)  = = e - M r o / 4 r r 0 ,  we find that 

and we write ( GM ( r ) ) ’  as HIM (0), where 
e i k .  R 

H M ( R ) = Z  G M ( r ) G M ( R - r ) =  - 
r (2d::3 ( Q ( k ) +  M2)2 

(6 .3)  

(6.4) 

From an integration by parts one may obtain (see equations (2.5) and (2 .6 )  of [ l ] )  

(6 .5)  H M  ( R  + 2 )  - H M  ( R  -2 )  = -R,GM ( r )  
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and therefore 

On the other hand, a direct integration yields 

Subtracting term by term, we can now write (6.3) as 
ic 

A = lim c [ 4 ~ ( 2 n  + 1)GM(2n + 1,0, O)-e-(2ni-i)M 1 
M-0 0 

(6.7) 

and since the series now converges uniformly in M (the summand falls as 
e-(2n+i)M/(2n + 1 ) 2 ) ,  we may interchange limits, obtaining 

Jc 

A = [(2n + l)g(2n + 1,0,0) - 13 = 0.152 859 3250. (6.9) 

(Ten-decimal accuracy was obtained after 50 terms by a double Richardson extrapola- 
tion [3]). 

0 

7. Solution to the difference equation 

Our algorithm actually uses FFT only in two directions, and switches to a faster 
one-dimensional method for the third. Consider a cube of radius R = 2“‘ (side 2 R )  
centred at the origin. For 1x1, Iyl, Izl all <R, let us express 

[ d x ,  y, z ) I 2 =  3 dk,, k,., z )  cos(k,x) cos(k,.y) (7.1) 
k , .  ki 

where k,, k, range over odd integers from 1 to 2R-1. Suppose that for 1x1, Jyl both 
< R ,  we know that 

f(x, Y, R )  = 3 b(k,, ky) cos(k,x) cos(k,y). (7.2) 
k,.  k ,  

Then if for each k,, k, we can find, for - R  < z < R, a function cp(  k,, k,., z) satisfying 

cp ( z + 1) + cp( z - 1) - 2~ ( Z )  = AV( Z )  - S (  Z )  (7.3) 

cp(-R) = cp(R)= b (7.4) 

where the arguments k,, ky are understood, and 

A = 4-2 COS k, - 2  COS k), 

the function 
(7.5) 

(7.6) 

will satisfy D2f = - fg2 inside the cube and will take the correct values off for Izl= R, 
but will vanish for 1x1 = R or lyl= R because of the Fourier expansion used. The true 
function f is therefore 
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We start by finding g inside the cube by the method of [l], and f on the surface from 
(5.11) with (6.9). We then determine s and b from (7.1) and (7.2) by FFT. (Our FFT 
routine has symmetries built in so that its intermediate arrays contain only R real 
numbers, not 2R complex numbers.) 

We solve (7.3) and (7.4) by a one-dimensional Green's function method: 

where S= s + b if IzI = R - 1, S- s otherwise, and (for z> > z,) 

sinh p ( R  - z,) sinh p ( R  + z,) 
sinh p sinh 2 p R  d z , ,  Z < )  = d Z < ,  z,) = (7.9) 

with 

 C COS^ p - 1) = A. (7.10) 

This is done in a single sweep (hence, faster than FFT which requires m sweeps) by 
summing C enrS( R - n )  and e-"@S( R - n )  comulatively and using the partial sums 
to evaluate (7.8). Having found 9, we obtain f from (7.6) and (7.7) via a reverse FFT 

routine. 

8. Results 

Table 1 shows the computing time required for R = 8, 16, 32 and 64. The total time 
grows as R3 log, R and is mainly consumed by FFT. This time (4s for R = 16, 4;min 
for R = 64) is how long it takes to findf for the whole cube containing R (  R + 1)( R + 2)/6 
distinct sites unrelated by symmetry. The time per site thus grows only logarithmically 
(6 ms for R = 64). 

Table 1. Computing time required for different values of R.  

R = Radius of 
cube sites CPU time (s)  Time/site (ms) 

Number of inequivalent 

8 120 
16 816 
32 5 984 
64 45 760 

0.8 6.7 
4.0 4.1 
30 5.0 

264 5.8 

We also note that our program receives no numerical input data of any kind. The 
CPU times given therefore include the time consumed by a preliminary program that 
computes g, as well as routines that find n (by an algorithm in [l]), y (by double 
Richardson extrapolation) and A. These preliminary times are negligible compared 
to the total time for R > 8 .  

In table 2 we compare results for r = 0, for different values of R. The discrepancies 
are quite compatible with a residual error l /  R4 as expected in (5.1 1). This fact confirms 
the accuracy of both (5.11) and (6.9). We also compare our best value of f(O), 
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Table 2. Results at r = 0 for various different values of R. 

~ 

A f = f R  (0) -fr(O) 
fR(0) i x 10-10) R ' ~ f  

R = 8  2.380 231 9818 -16 212 -0.0312 
R = 1 6  2.380 239 1509 -4 521 -0.0295 
R = 3 2  2.380 239 5753 -271 -0.0291 
R = 64 2.380 239 6013 -17 -0.028 [ 6 ]  
R =CC (extrap) 2.380 239 6030 
Independent calculation 2.380 239 6030 

extrapolated from R = 32 and 64, with the result of an independent calculation in 
which f(0) is written as 

where 

(8.3) 

We approximate f, by summing (8.2) directly over a spherical volume centred on the 
origin. From (5.9) one sees that the summand diminishes as l / r5  and that its leading 
term averages to zero on spherical integration. The leading spherically symmetric term 
goes as l / r ' ,  and hence contributes a truncation error of 1/  R4 ( R  = radius of the 
sphere). But the coefficient of this term can be found and its contribution from outside 
the sphere estimated as an integral. When this contribution is added, the result exhibits 
a nearly drift-free variation with R, due to the graininess of the sum. This variation 
can be largely reduced by softening the truncation cut-off. Thus we obtain f l  to ten 
decimal places from a sphere with a radius of about 45. 

For f, we use the formula 

C,,,,lncoth(~.rr 

where m, and m2 range over integers from -CO to CO with the exclusion of m ,  = m, = 0, 
and 

C,,,, = 3+3(- l )" l+  (-l)"'l+"'~ (8.5) 
obtained by one of us [4] through an elaboration of the methods of Madelung [ 5 ] .  
This formula sums over only two dimensions (in the dual space) and converges 
exponentially in the radius, so that we easily obtained ten decimal places. 

The excellent agreement between the resulting value of f(0) and that extrapolated 
from our main calculation once more confirms the accuracy of (5.11) and (6.9). We 
have also studied the error in f ( r )  due to box size at points away from the origin. We 
find that the discrepancy between R = 32 and R = 64 is comparable to that at the origin 
except near the boundary of the smaller cube, where it becomes several times greater. 
(See table 3.)  
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Table 3. Af=f32 -fM ( x for various positions 

0 - 26 -26 -26 
8 -27 -25 -23 

16 -33 -18 0 
24 -76 -7 +23 
32 -307 -19 + I 4  

Table 4. Values off at various positions for R = 64. 

0 
1 
2 
3 
4 
8 

12 
16 
24 
32 
40 
48 
56 
64 

2.380 239 601 
0.699 170 588 

-0.133 147 848 
-0.599 097 757 
-0.912 310752 
-1.634 780 550 
-2.048 187 988 
-2.339 585 215 
-2.748 607 256 
-3.038 010480 
-3.262 168 749 
-3.445 159 361 
-3.599 784 337 
-3.733 669 485 

0.194 563 494 
-0.558 648 209 
-0.984 918 390 
-1.282 349 719 
-1.989 558 018 
-2.399 617 137 
-2.689 582 291 
-3.097 321 521 
-3.386 137 324 
-3.609 960 048 
-3.792 733 942 
-3.947 207 502 
-4.080 980 935 

-0.058 629 810 
-0.779 172 730 
-1.197 086 332 
-1.491 461 189 
-2.195 089 390 
-2.604 141 837 
-2.893 632 281 
-3.300 914 889 
-3.589 509 000 
-3.813 200 797 
-3.995 888 273 
-4.150 300 528 
-4.284 028 213 

In table 4 we show some results for R = 64. (These are selected from the whole 
array of 45 760 distinct numbers, all of which were calculated in a 44 min run.) On 
the basis of tables 2 and 3, we can make a conservative estimate that the absolute (not 
relative) error in these numbers is less than 3 x for Irl< 32, and less than 3 x lo-' 
everywhere. 

We have not attempted to achieve greater accuracy in table 4 by extrapolation from 
smaller R, because we know that we could get several more decimal places anyway 
by extending (5.11) to higher order. Since this series is asymptotic there would 
eventually be diminishing returns at any fixed R, but a study of the results obtained 
by truncating (5.1 1) at lower orders indicates that at R = 64 we should get considerably 
more accuracy for at least the next few terms. 

9. The momentum space integral 

It is startling to compare our results with those of the usual momentum space methods. 
Consider a direct calculation of the six-dimensional integral (2.1). To regularise this 
expression as M + 0, it is best to subtract out the leading singularities and integrate 
these analytically. A natural candidate is the integrand of (2.3), but the domain of 
integration is different. 
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In practice, it is not possible to get rid of all the singularities, and one is left with 
integrable singularities inside the domain of interest. This lowers the accuracy achiev- 
able through numerical integration: as one attempts to obtain higher accuracy, the 
computation is bogged down at these singularities. A second problem is the oscillating 
nature of the integrand: for ro not very small, it is necessary to include many points 
to take into account the cancellations. When the dimension of the integral is six or 
greater, this number of sampling points becomes prohibitive. Thus, it is just not possible 
with this method to get accurate values for large Wilson loops or lines. This was 
pointed out in [ 6 ]  where Wilson loop averages were calculated by numerical integration, 
and even 6 x 6  loops could not be obtained to better than 1 percent accuracy. In 
addition, the integral (2.1) must be recalculated for each value of ro, whereas in the 
position space method, all values of ro are treated in one shot. 

In terms of CPU times, the position space calculation treats lo4 values of ro with 
eight-decimal accuracy in about 6 ms of VAX/780 CPU time per ro,  whereas the direct 
evaluation of (2.1) with three-decimal accuracy at the origin takes seconds, and much 
more away from ro=O. 

A second approach to the momentum integral involves transforming the integral 
to a lower dimension. Equation (2.1) can be rewritten as 

with ro = (x, y, z )  and 

dk  dk 
2 n  21r F({A), U )  = f - f - exp(2A, cos k )  exp(2A2 cos k’) 

x exp[2A3 cos( k + k’)] exp[i( k + k‘)u]. (9.3) 
In this last expression, one of the momentum integrals can be expressed as a Bessel 
function. It is thus possible to reduce (2.1) to a four-dimensional integral. The main 
advantage of this procedure, besides reducing the dimension of the integral, is to 
concentrate all of the oscillations into one dimension where they can be evaluated 
accurately, so that working with large ro is not so bad. One has to recalculate the 
three-dimensional integral for each choice of ro,  as in the previous treatment. Finally, 
it is necessary to regularise the integral by subtraction. This leads to integrable 
singularities as in the direct approach, and reduces the accuracy of the numerical 
calculation. Thus we find that even a single value of ro takes longer than to calculate 
the whole array by the real space method for comparable accuracy. 
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10. Extensions 

In this section we shall merely sketch some possible procedures for treating harder 
problems along the lines of the present paper. 

Suppose we wished to treat some more complicated theory, such as a lattice gauge 
theory. Our hope is that this would merely necessitate a new factor in the numerator 
of the vertex function. If this factor is trigonometric in the momenta, it can probably 
be replaced by a sum over nearest-neighbour values of the propagator. In that case 
the calculation becomes the same as for a scalar field, only repeated several times. 
Thus the spider graph on two Wilson lines, which in scalar theory required 4f min for 
all r, having components <64, might still require less than an hour ( V A X / 7 8 0 c ~ u )  
in gauge theory. 

Returning to scalar theory, suppose we wished to treat the loop insertion diagram 
of figure 3. Writing t for the fourth lattice component (parallel to the two Wilson 
lines), and GM(r, , ) ,  g ( r , t ,  for the four-dimensional generalisations of GM and g, we 
have to replace (3.1) by 

(10.1) 

where 

so that after reasoning similar to that of section 3 we have 
D 2 ( D 2 f ( r ) )  = h ( r )  

where 
(10.3) 

(10.4) 

0 r, r, + r  r0 

Figure 3. Loop insertion graph between two Polyakov lines. The two propagators terminat- 
ing on the lines may be summed separately over time, but the two inner ones must be 
summed together as in (10.2). 
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Once h ( r )  is known, (10.3) can be solved in three dimensions by the methods of the 
present paper, with hardly any more computing time if superfluous FFT are avoided. 
Thus the new problem is to compute (10.4) at each r. Since the summand falls off as 
( r’ + t’)-’, one could obtain six-decimal accuracy by summing up to t = 100 for each 
r. But the time can be greatly reduced by summing the difference between g ( r ,  t)’  and 
its asymptotic expression; then t = 16 would be sufficient for six decimals. It would 
remain to evaluate CZm ( r 2 +  t2)-’  for each value of r. (For r = 0, the origin may be 
excluded and the sum is 24‘(4) = .rr4/45.) But since this sum depends on r only through 
the integer r2,  the number of sums is reduced. Thus for R = 64 in section 8, there are 
only about 10000 distinct values of r’. Morever, one can make the continuum 
approximation 

(10.5) 

for all but the smallest values of r, since the error can be shown to fall off as rZ e - 2 n r / r 2 .  
Taking all this into consideration, we would expect that the calculation for R = 64 
could be performed in less than half an hour of VAX/780 CPU time. 

Now, returning to the spider graph, suppose we wish to compute a Wilson loop 
of arbitrary shape in four dimensions. Having found g ( r )  in a four-dimensional box 
( r  now denotes ( r ,  t ) )  we may compute 

(10.6) 

where rw varies over the loop. Then the quantity sought is j (  r ) 3  which converges as 
d 4 r / r 6 .  But the leading term can be evaluated by other techniques, and the increment 

converges as 5 d4r/r8, so that one can obtain high accuracy from a box with R = 64. 
For rectangular loops one may save time by computing (10.6) for line segments of 

various lengths. If L is the maximum length, this requires only R4L steps; then one 
has a library from which in R4 steps one finds j ( r )  for any rectangle and sums j ( r ) ’ .  
In this way one might calculate a great number of rectangular loops in about 20 min 
of VAX/780 CPU time for each loop. 

Even more efficiency might be obtained by writing the desired quantity as 
C f( rw)  where 

(10.7) 

Since of any three points on a rectangle, two must be on the same or opposite sides, 
these two can be taken as the sources of j ’ .  The part of j 2  due to two points on the 
same line segment can be calculated for each segment length; this need not be repeated 
for each loop. The part due to two points on parallel segments might be done in three 
dimensions of position space and one (parallel to the segments) of momentum space; 
this momentum would appear as a mass in the three-dimensional propagator, which 
can be found by the methods of [ 13. For wide loops only small masses would contribute. 

Finally, consider the three-dimensional problem treated in the present paper, but 
within some irregular volume with Dirichlet boundary conditions. Here the methods 
of [ l ]  cannot be used to find g ( r ,  r’);  it must be done by relaxation, possibly assisted 
by a FFT with artificial sources at the boundary. However, once g(r ,  r ’ )  is found for 
all r’ and a fixed r, one can find f( r, r’)  satisfying D2f= -g2 by the same methods as 
presented in the previous sections. 
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11. Conclusion 

1587 

We have explored some of the advantages of the position space method for calculating 
diagrams. In position space one can deal effectively with complicated Wilson loop 
shapes or irregular boundaries, but even in the absence of these complications the 
position space calculation may be faster and more accurate. We illustrated this last 
feature by the line-line correlation function in a scalar lattice theory (cf figure 1). We 
obtained an accuracy far beyond what can be hoped for in momentum space calcula- 
tions, and achieved great speed by finding the value of the correlation function for 
many separations at once. In our calculation ( R  = 64) we obtained the value of figure 
1 on the lattice with eight-decimal accuracy in 6 ms CPU time for each of 45 760 
inequivalent values of ro .  The accuracy was undiminished for most values of ro with 
all components <64. It should be understood that position space will not always be 
the better method. In particular, for complicated diagrams with third-order vertices, 
the momentum space integral tends to be of lower dimension. But the enormous 
advantage of position space in both speed and accuracy in the calculation presented 
here makes it probable that the superiority of position space extends to a good many 
situations. 
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